Application of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems.

نویسندگان

  • Davide Migliorini
  • Francesco Nattino
  • Geert-Jan Kroes
چکیده

The fundamental understanding of molecule-surface reactions is of great importance to heterogeneous catalysis, motivating many theoretical and experimental studies. Even though much attention has been dedicated to the dissociative chemisorption of N2 on tungsten surfaces, none of the existing theoretical models has been able to quantitatively reproduce experimental reaction probabilities for the sticking of N2 to W(110). In this work, the dissociative chemisorption of N2 on W(110) has been studied with both static electronic structure and ab initio molecular dynamics (AIMD) calculations including the surface temperature effects through surface atom motion. Calculations have been performed using density functional theory, testing functionals that account for the long range van der Waals (vdW) interactions, which were previously only considered in dynamical calculations within the static surface approximation. The vdW-DF2 functional improves the description of the potential energy surface for N2 on W(110), returning less deep molecular adsorption wells and a better ratio between the barriers for the indirect dissociation and the desorption, as suggested by previous theoretical work and experimental evidence. Using the vdW-DF2 functional less trapping-mediated dissociation is obtained compared to results obtained with standard semi-local functionals such as PBE and RPBE, improving agreement with experimental data at E(i) = 0.9 eV. However, at E(i) = 2.287 and off-normal incidence, the vdW-DF2 AIMD underestimates the experimental reaction probabilities, showing that also with the vdW-DF2 functional the N2 on W(110) interaction is not yet described with quantitative accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles.

Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N2 on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exch...

متن کامل

A Modified van der Waals Mixture Theory for Associating Fluids: Application to Ternary Aqueous Mixtures

In this study a simple and general chemical association theory is introduced. The concept of infinite equilibrium model is re-examined and true mole fractions of associated species are calculated. The theory is applied to derive the distribution function of associated species. As a severe test the application of presented theory to the van der Waals mixture model is introduced in order to p...

متن کامل

The phase transition of corrected black hole with f(R) gravity

In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...

متن کامل

Volumetric properties of high temperature, high pressure supercritical fluids from improved van der Waals equation of state

In the present work, a modified equation of state has been presented for the calculation of volumetric properties of supercritical fluids. The equation of state is van der Waals basis with temperature and density-dependent parameters. This equation of state has been applied for predicting the volumetric properties of fluids. The densities of fluids were calculated from the new equation of state...

متن کامل

A New Mixing Rule for Mixtures of Hard Spheres

A mixing rule for the mixtures of hard-spheres is presented which can be reduced to the standard van der Waals mixing rule at low densities. The effectiveness of the mixing rule for the size and energy parameters of lennard-Jones fluid are examined by combining them with an equation of state to calculate thermodynamic properties. The results of calculation are compared with the molecular dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 8  شماره 

صفحات  -

تاریخ انتشار 2016